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Abstract The primary emphasis of this work on kinetics is to illustrate the a
posteriori approach to applied nonlinear analysis, where focus on data may also lead to
novel outcomes, as may also be the case with the current a priori tendencies of applied
analysis, which relies on axioms or constructs concerning the nature of the observable.
Here, methods for the determination of chemical rate constants are developed and dis-
cussed utilizing nonlinear analysis which does not require exact knowledge of initial
reactant concentrations. These methods are compared with those derived from stan-
dard methodology for known chemical reactions studied by eminent kineticists and
in one case with a reaction whose initial reactant concentration was in doubt. These
gradient methods are shown to be consistent with the standard methods on average,
and could readily serve as alternatives for standard conditions and can be used for
studies where there are limits or unknowns in the initial conditions, such as in the bur-
geoning fields of astrophysics and astrochemistry, forensics, archeology and biology
where the standard methods are not applicable. All four reactions studied exhibited
semi-sinusoidal-like change with reactant concentration change which standard inte-
gral methods have not highlighted, and which seems to constitute the observation of
a new effect. Reasons based on two mechanisms are given for this observation, and
experiments are suggested that can discriminate between these two factors. Although
first and second order reactions were investigated here, the method applies to arbitrary
fractional orders by polynomial expansion of the rate decay curves where closed form
integrated expressions do not exist at present. Integral methods for the above will be
investigated next.
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1 Introduction and methods

Chemical kinetic equations were largely developed with the assumption of rate con-
stant invariance where in particular rate constant determination usually required knowl-
edge of the initial concentrations. A possible reason for this assumption is that the rate
constant in elementary fluctuation-dissipation theorem is a “kinetic coefficient” that
can be determined statistically [1] assuming that the form of the rate law is known.
Examples in applications for special cases abound in science literature e.g. [2,3].
Another possible reason is that the chemical rate constant is actually correlated to a
theory of molecular structure of the intermediate and solvent matrix as in the Eyring
activated-complex theory [4], where the structure is unique. Last but not least, it was
defined a priori to be a constant for various empirically based reasons. These kinetic
equations do not determine the instantaneous rate constant. Some have attempted to
relate the structures derived from mathematics, such as in Harmonic analysis and
Fourier expansions to experiment to derive a sequence of rate constants for especially
first order processes assuming noise to be a factor for the presence of a group of rate
constants [5] by fitting experimental data to the analysis. However, the physical model
or concept is not evident in such expositions for a spread of rate constant values. In
particular, the spread of values refers to very short time scales, whereas here change
over a very large time scale of the order of the duration of the experiment has been
detected. Much thought has been made by some workers concerning the nature of the
relationship between the sciences and mathematics. Prominent amongst these indi-
viduals is Escultura [6], who has focused attention on ambiguous and controversial
areas of mathematics [7–12] in addition to contributing to novel qualitative modeling
concepts in theoretical physics [13]. Essential to the solution of problems in the nat-
ural sciences according to his view is “qualitative” or non-quantitative mathematics
that includes abstract mathematical spaces and the search for the laws of nature which
are not static and invariant. This methodology explains nature in terms of its laws in
contrast to the present methodology of physics that only describes the appearances of
nature mathematically. In conventional science such as mathematical physics, prob-
lems are solved using existing tools of mathematics and physics. In his methodology
a physical theory is devised to provide the solution and is a mathematical system
whose axioms are laws of nature and requires the discovery of appropriate laws of
nature at the current juncture of time. We wish to highlight another aspect to this line
of thought. Rephrasing Escultura, current trends in mathematical applications almost
always focuses on the creation of mathematical structures that are considered to mirror
physical reality and experimental outcomes, implying that previous experimental data
are sufficient for theoretical constructs. Less common are applications in mathematics
to analyze experimental data using as closely as possible the operational definition of
variables to elucidate the validity or otherwise of theories, and to maintain an open
view with regard to possibly newer theoretical constructs. One aspect of the tendency
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referred to by Escultura is that it encourages the science of prediction in the natural
sciences where sometimes considerable resources are expended in performing exper-
iments to verify and substantiate theories, where data that are extraneous and present
an anomaly to the theoretical construct is ignored; error analysis in experiment is a
procedure to eliminate data that are out of line with a prevailing theory. The methods
developed here are of secondary importance compared to the a posteriori analysis
of the data and its outcomes; these methods refer to variables which come from the
experimental definition. The main thrust of this sequel, therefore, is to put priority
on the experimental data as an object of mathematical analysis to construct or sug-
gest theoretical and mathematical structures by recourse to elementary analysis of
the defined physical variables. The data from the highly empirical field of chemical
kinetics when analyzed and treated in this manner suggests the presence of a new
effect; it is therefore suggested here that appropriate and consistent theory can be con-
structed a posteriori, rather than a priori which is the current tendency alluded to by at
least Escultura. Previous work based on precise simulation data [14] of a bidirectional
chemical reaction system in equilibrium involving purely elementary reactions in each
direction concluded that the rate constants were a function of species concentration
through the defined and determined reactivity coefficients for at least these elementary
reactions, which contradicts the operational definition of rate constants (for elemen-
tary reactions at least) which are not defined functions of the reactant concentration.
The change in the rate constant values with concentration changes in the simulation
were ascribed to the changes in the force fields along the reaction pathway [14]. There
have been descriptions of such variation in coupled, non-elementary reactions but not
for elementary ones. The simulation results motivated this study of analyzing well
documented reaction data to monitor possible changes in rate constants during the
course of the experimental run. However, there may be other reasons other than that
due to the potential fields operating in a reactive system in equilibrium in a real, non-
simulated experiment. Inhomogeneities in the reaction medium from the moment of
commencement of the reaction might also lead to cross-coupling of forces and fluxes,
leading to concentration dependencies; indeed, we conclude that this is the predom-
inant effect, with the changes due to a homogeneous potential field being secondary
in nature. Even these ancillary phenomena not due to a homogeneous force field are
not normally considered in current theoretical formulations. The possibility that our
observations are due to artifacts from instrumental errors or the optimization method
is reasoned as unlikely since the experiments were conducted by different groups at
very different times with different classes of reactions and they all showed the same
trend over long time scales. The secondary motivation of this work is the development
of appropriate methods in kinetics consonant with experimental definitions. By focus-
ing on gradients, it is possible to determine both the average and instantaneous rate
constants that can monitor changes in the rate constant with concentration changes as
suggested by the above theories.

For an elementary reaction

A1 + ν2A2 · · · νnr Anr → Products (1)

we define the rate constant k as the factor in the equation
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d[A1]
dt

= ˙[A] = −k[Q] (2)

where

[Q] =
nr∏

i=1

[Ai ]νi = lA1 A2...Anr
(t) = lQ(t)

with lR(t) = [R](t) in general and lA(t) = [A]1(t) in particular, with the notation
lA1(t)lA2(t) . . . lAnr

(t) = lQ(t). The square brackets denote the concentration of the
species, and t is the time parameter. For the above, the order O , which need not be
integer is defined as O = ∑nr

i=1 νi . Clearly, for the above

k = −
{

d[A1]
dt

}/
Q. (3)

We determine k here directly by developing various methods of computing average
and instantaneous gradients for Eq. (2). In traditional methods, the integrated rate
law expression is known for only a handful of integer O values of (2) which also
require initial conditions; no such restrictions apply to the current numerical tech-
nique. Another class of method that we develop combining numerical differentiation
through polynomial expansion and a least squares optimization is as follows.

Define the function R(k) for n datapoints as

R(k) =
n∑

i=1

(
dlA(ti )

dt
− klQ(ti ))

)2

. (4)

Then,

R′(k) = 0 ⇒
n∑

i=1

(
dlA(ti )

dt
− klQ(ti )

)
lQ(ti ) = 0

which therefore implies

k = −
∑n

i=1
dlA(ti )

dt .lQ(ti )∑n
i=1 l2

Q(ti )
. (5)

Equation (5) does not require iterative methods such as Newton-Raphson’s (NR) to
determine the rate constant. A variant of the R(k) optimization above is found in Sect.
2.0.5; the reason for the variation is that we optimize over an intergrated expression
rather than directly the rate equation (2) such as (25) for the first order rate constant
k1 and (26) for the second order constant k2. All variants of the above methods will be
discussed in sequence in what follows. Most kinetic determinations use logarithmic
plots with known initial concentrations, although there have been attempts at integral
methods [15–26, and refs. therein] that dispense with the initial concentration. These
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standard methods all assume constancy of the rate constant k, and therefore have not
inspired methodology that can detect the changes to the rate constant that, according
to the detailed results of ref. [14] sheds important information on the activation energy
profile changes due to the force fields acting on the reacting species. As mentioned
above, there are conceivably many other reasons for variation with time of the rate
constants; they include coupling of inhomogeneous temperature field gradients with
chemical species fluxes, leading to physical variable inhomogeneities in the reaction
cell that modifies the rate of reaction with time. This is discussed after the data is
presented in what follows.

There have been detailed and specialized reports and treatises of computational
techniques over the many decades but these have been sparse and far between. Wiberg
[27, p. 757] has described various more advanced series expansion techniques in
conjunction with least squares analysis to derive kinetic data. His use of numerical
integration is confined to solving by Runge-Kutta integration a set of coupled equa-
tions, such as feature in an enzyme-catalysed reaction [27, p. 771]. Wiberg in turn
draws upon the collective efforts collated by De Tar [28,29]. It seems that De Tar’s
collation anticipates to some degree many of the developments cited above in this
work’s bibliography. A first order treatment of a chemical reaction given in the pro-
gram LSKIN1 [28, p. 126] requires data and time intervals that are conformable to
the Roseveare-Guggenheim time interval requirement. LSKIN2 [29, p. 3] solves for
rate constant and initial concentrations of a second order reaction based on a series
expansion of the integrated rate law expression. Here, the curvature would introduce
“errors” if a linear expansion were used. For both these methods, the constancy of the
rate constant k is a basic assumption, which is not the case here.

Nonlinear analysis (NLA), will be attempted here in preliminary form, in order
to compute both the instantaneous and average rate constants. In this approach, we
avoid completely the method of equating closed form expressions Fn(d, k, x) of the
integrated rate law expression with polynomial expressions of finite order n such as
Pn = ∑n

i=0 bi xi where bi are coefficients that are derived from a least squares opti-
mization of numerical data of experiments, such as found in the works of Johnson,
Maltby, De Tar and several others [17,19,29]. Typically, Fn might represent the con-
centration or concentration index of one of the reactants and d the initial reactant
concentration and other internal variables and k the rate constant; x is typically the
time variable. The method is to equate one to one (1 ↔ 1) the series expansion of
Fn(x) such as Fn = ∑n

i=0 ai xi leading to the identification (ai ↔ bi ) for i ≤ n. The
ai coefficients are all known expressions of the rate constant and initial concentra-
tions and pertinent variables d. Hence if the coefficients bi are determined by some
form of optimization technique, utilizing the (1 ↔ 1) ansatz implies that by solving
various equations involving the coefficients, the rate constant and d variables might
be determined. Qualitatively, one can infer the ambiguity of this ansatz. Suppose Fn

is monotonically decreasing (as it must for a unidirectional reaction without reactant
replenishment): then for Fn(x) < a, x > q for some q. Clearly for very large x , the
influence of the higher powers of xi for any domain segment α < x < β where x > q
say will predominate. If Pn were optimized within this range from experimental data,
then bi �= ai i ≤ n since |bi | would have a larger magnitude to compensate for the
lower powers of xi , (i ≤ n). Hence an imposed 1–1 correspondence of (ai ↔ bi )
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when this is not in fact the case to derive the rate constant k and other kinetic coef-
ficients d from the known values of ai and their inter-relationships is inaccurate and
might only work for “small” values of x < r , where r is an ambiguous number that
is not stated and therefore the method is not general. In particular, even if the least
squares optimization gives a very good fit to the Pn curve, the fact that bi �= ai i ≤ n
implies that the k and d variables that depends of the 1–1 relationship cannot be guar-
anteed to be accurate for larger domain spaces for the Pn optimization since these
approximate equations only obtain at very low time or concentration values that can-
not be assumed to obtain at the time scales and concentrations of all reactions. The
method of De Tar and [17] was applied to the reactions featured here with very poor
results. Our method then is to directly compare the experimental data and the gradi-
ents derived from the polynomial fit without expanding the integrated expressions and
comparing coefficients. We analyze 2 first order reactions and one second order one
using data from prominent kineticists. In addition, we select one first order reaction
whose initial concentration index is ambiguous utilizing the others as a reference to
estimate the likelihood of our result based on NLA; if our analysis concurs with the
standard results for the 3 reactions from the literature, then one might be confident that
the NLA analysis of the ambiguous reaction is reasonably accurate even if it does not
concur with the standard analysis that required the value of the ambiguously deter-
mined λ∞ initial concentration index. Important experiments in science are conducted
under uncontrolled conditions, such as in astrochemical reaction rate determinations
and photochemical emission spectra in the Mars and Titan atmospheres measured over
the decades [30–32]. A similar situation obtains in forensic science and archeology
and in biological physiological rate determinations. The basic methods presented here
caters for both controlled and uncontrolled initial conditions.

The 3 first order reactions (i)–(iii) and second order reaction (iv) studied are item-
ized below:

(i) the tert. butyl chloride hydrolysis reaction in ethanol solvent (80% v/v) at 25 ◦C
derived from the Year III teaching laboratory of this University (UM) where
the initial concentration, although determined, is ambiguous. Because of time
constraints, the inaccurate λ∞ = 2,050 µS cm−1 for (i) was determined by heat-
ing the reaction vessel at the end of the monitoring to 60 ◦C until there was
no apparent change in the conductivity when equilibrated back at 25 ◦C. Reac-
tion (i) involved 0.3 mL of the reactant which was dissolved in 50 mL of ethanol
initially. The reaction was conducted at 25 ◦C and monitored over time (min-
utes) by measuring conductivity (µS cm−1) due to the release of H+ and Cl−
ions as shown below in (6),

C4H9Cl + H2O
ka−→ C4H9OH + H+ + Cl−. (6)

This reaction under various conditions is run as a standard laboratory exercise
in physical chemistry at Universities throughout the world.

(ii) the methanolysis of ionized phenyl salicylate derived from the literature
[33, Table 7.1, p. 381] with presumably accurate values of both the initial con-
centration and for all data sets of the kinetic run. Reaction (ii) may be written
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PS− + CH3OH
kb−→ MS− + PhOH (7)

where the rate law is pseudo first-order expressed as

rate = kb[PS]− = kc[CH3OH][PS−].

The methanol concentration is in excess and is effectively constant for the
reaction runs [33, p. 407]. The data for this reaction is given in detail in
[33, Table 7.1], conducted at 30 ◦C where several ionic species are present in
the reaction solution from KOH, KCl, and H2O electrolytes.

(iii) the primarily SN1 substitution reaction [34, Table IX, p. 2071] of tertiary butyl
bromide (But Br) with dilute ethyl alcoholic sodium ethoxide in ethanol solvent
where there concurrently occurs an approximately 20% contribution of an E1
elimination reaction. Reaction (iii) may be written

CH3CBr
SN1

−−−−−→ Products (8)

where the solvent was EtOH with initial sodium ethoxide concentration
[NaOEt] = 0.02386N at 25 ◦C. The products consisted of approximately 81%
substituted tertiary butyl ethoxide and 19% olefinic molecules due to E1 elim-
ination. Hence the rate constant here refers to a composite reaction (details in
[34, p. 2070] and [35, p. 2064]).

(iv) the second order E2 elimination reaction [35, p. 2059–2060 and Table VII,
p. 2064] with reactants isopropyl bromide (Pri Br) and sodium ethoxide (NaO-
Et). Reaction (iv) involving isopropyl bromide Pri Br ≡ (CH3)CHBr(CH3) may
be written

(CH3)CHBr(CH3) + OEt−
E2

−−−−−→ CH2CHCH3 + Br− + HOEt (9)

where the isopropyl bromide reacts with the OEt− ion in EtOH solvent at 25◦C
to yield 80.3% of the olefinic product with some SN2 substitution with the
(OEt) functional group [35, Table III, p. 2061] according to the kineticists. Fur-
ther details and data appear [35, Table VII, p. 2064]. It should be mentioned
that the E2 reaction was inferred to be second order from prior experimental
considerations since the [NaOEt] concentration reduction from the data exactly
coincides with the reduction of Pri Br and was not independently determined.
Although this type of measurement is perfectly acceptable for the standard
integrated expression, NLA is able to detect the scatter due to the larger inac-
curacy of the non-cancellation of errors in terms of the non-smooth nature of
the instantaneous rate constant curve discussed later (see Fig. 1 for the graph).

“Units” in the figures and text pertain to the appropriate reaction variable dimension,
for instance either the conductivity (µS cm−1) for reaction (i) or the light absorbance
for (ii) which has no true units. Either because of evaporation or the temperatures
not equilibrating after heating, the measured λ∞ for reaction (i) is larger than the
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Fig. 1 The computation of the
instantaneous rate for reaction
(iv) for polynomial fit with
n = 6 along the regime of
coincidence of the polynomials
with degrees n =4–7
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actual one determined from NLA. Reaction (ii) is very rapid compared to (i) and the
experimental data plots show high nonlinearity. We denote by λ the measurement
parameter which is the conductivity µS cm−1 or absorbance A [33, Eqs. 7.24–7.26]
for reactions (i) and (ii) respectively; λ also refers to the concentration [X] of species
X for reactions (iii) and (iv). The more accurately determined λ∞(= A∞) for (ii) [33,
Table 7.1, p. 381] was at approximately 0.897. Analysis of (ii) give values of A∞
very close to the experimental ones that suggests that our independent determination
for reaction (i) λ∞ is correct. The experimental data and number of readings for the
determination of rate constants is always related to the method used and the order of
accuracy required in the study; for Khan [33, Table 7.1, first A column], (reaction (ii))
, 14 normal readings over 360 s sufficed for Khan’s purposes, whereas for the practical
class (reaction (i)), 36 readings over 55 min were taken. The meager 14 readings of
(ii) covered a major portion of the nonlinear region of the reaction, whereas for (i)
the many readings were confined to the near-linear regime. Linear proportionality is
assumed between λ and the extent of reaction x , where the first order law (c being
the instantaneous concentration, k the general rate constant and a the initial concen-
tration) is dc

dt = −kc = −k(a − x); with λ∞ = αa, λt = αx and λ(0) = λ0 = αx0,
integration yields for assumed constant k

ln
(λ∞ − λ0)

(λ∞ − λ(t))
= kt (10)

Equation (10) determines k if λ0 and λ∞ are known.
The analysis of well studied reactions (ii)–(iv) would provide a reference and indi-

cation of the predicted value in (i) for the initial concentration, apart from checking
for overall consistency of the methodology in general situations especially when there
is doubt concerning the value of the initial concentration.

The methods presented here applies to any order provided the expressions can be
expanded as an n-order polynomial of the concentration variable against the time inde-
pendent variable. To get smooth curves that are stable one had to modify and use a
proper curve-interpolation technique that is stable which does not form sudden kinks
or points of inflexion and this follows next.
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1.1 Orthogonal polynomial stabilization

It was discovered that the usual least squares polynomial method using Gaussian elim-
ination [36, Sect. 6.2.4, p. 318 ] to derive the coefficients of the polynomial was highly
unstable for n > 4, which is a known condition [36, p. 318, Sect. 6.2.4]. For higher
orders, there is in addition the tendency to form kinks and loops in an interpolated
curve for values between two known intervals. Other methods described in specialized
treatises [37, Chap. 5, Sect. 5.7–5.13], even if robust and stable,such as the Chebyshev
approximation required values of the proposed experimental curve at predetermined
definite points in time, which is outside the control of one using predetermined data
and so for this work, the least square approximation was stabilized by orthogonal
polynomials [36, Sect.6.3] modified for determination of differentials. The method
can also be extended to integrals and results follow in the next sequel. The usual
method defines the nth order polynomial pn(t) which is then expressed as a sum of
square terms over the domain of measurement to yield Q f in (11):

pn(t) =
n∑

j=0

h j t
j

Q f ( f, pn) =
N∑

i=1

[ fi − pn(ti )]
2. (11)

The Q f function is minimized over the polynomial coefficient space. In the orthog-
onal method adopted here, we express our polynomial expression pm(t) linearly in
coefficients a j of ϕ j functions that are orthogonal with respect to an inner product def-
inition. For arbitrary functions f, g, the inner product ( f, g) is defined below, together
with properties of the ϕ j orthogonal polynomials:

( f, g) =
N∑

k=1

f (tk) · g(tk)

(ϕi , ϕ j ) = 0 (i �= j) and (ϕi , ϕi ) �= 0. (12)

ϕi (t) = (t − bi )ϕi−1(t) − ciϕi−2(t) (i ≥ 1),

ϕ0(t) = 1, and ϕ j = 0 for j < 1,

bi = (tϕi−1, ϕi−1)/(ϕi−1, ϕi−1) (i ≥ 1), bi = 0 (i < 1),

ci = (tϕi−1, ϕi−2)/(ϕi−2, ϕi−2) (i ≥ 2), and ci = 0 (i < 2). (13)

We define the mth order polynomial and associated a j coefficients as follows:

pm(t) =
m∑

j=0

a jϕ j (t),

a j = ( f, ϕ j )/(ϕ j , ϕ j ), ( j = 0, 1, . . . m). (14)
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The recursive definitions for the first and second derivatives are given respectively
as:

ϕ′
i (t) = ϕ′

i−1(t)(t − bi ) + ϕi−1(t) − ciϕ
′
i−2(t), (i ≥ 1)

ϕ′′
i (t) = ϕ′′

i−1(t)(t − bi ) + 2ϕ′
i−1(t) − ciϕ

′′
i−2(t), (i ≥ 2) (15)

Here the codes were developed in C/C++ which provides for recursive functions which
we exploited for the evaluation of all the terms. The experimental data were fitted to
an mth order expression λm(t) defined below

λm(t) =
m∑

j=0

h j t
j = pm(t) =

m∑

j=0

a j ϕ j (t) (16)

The coefficients h j are all computed recursively, and the derivatives determined
from (16) or from (14) and (15). Once h j or a j are determined, then the gradient to
the curve λm(t) is computed as

λ′
m(t) =

m∑

j=0

jh j t
j−1. (17)

The lQ(t) function of (2) is expanded similarly as for λm(t) for order m. The orthog-
onal polynomial method is stable and the mean square error decreases with higher
polynomial order in general monotonically (where n is used to denote the integer
order), but the differentials are not so stable, because of the contribution of higher
order coefficients in the differential expression as will be shown. From the form of the
of the equation that will be developed, the rate constant is determined as the gradient
of a straight-line graph in the appropriate segment of the graph. However, the curva-
ture of the plot will increase with increasing n, giving a poorer value of k, whereas
higher values of n would better fit the λ versus t curve. Hence inspection of the plots
is necessary to decide on the appropriate n value, where we choose the lowest n value
for the most linear graph of the expression under consideration that also provides a
good λ(t) fit over a suitable time range over which the k rate constants apply. The
orthogonal polynomial stabilization method provides good λ fits with increasing n,
but not gradients, so that the onset of sudden changes to the gradient which on physi-
cal grounds is unreasonable can be used as an indication as to which curve to select.
There is in practice little ambiguity in selecting the appropriate polynomials, as will be
demonstrated. Reactions (i) and (ii) both gauge initial concentrations in terms of the
A∞ ( λ∞) or final reading of a physical factor proportional to concentration and the
structure of the analysis is the same and will therefore be discussed simultaneously,
followed by reactions (iii)–(iv), where concentrations are measured directly during
the course of the reaction, which will be discussed together because the form of the
boundary conditions and data are of the same class.
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Fig. 2 Plot of data from
reaction (i) using orthogonal
polynomials for various orders
n. The the least squares deviation
goes down dramatically with
increasing n, which was found
not to be the case with the
normal non-orthogonal
polynomial method
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Fig. 3 Experimental points
omitting point at A∞ for
reaction (ii) at time = 2,135 s.
The curve is rather non-linear
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2 Analysis of reactions (i) and (ii)

In this section, the rate constant for reaction (i) is denoted ka and that of reaction
(ii) as kb.

Figure 2 are plots for the different polynomial orders n for reaction (i). It will
be noticed that higher n values in general leads to better fits visually; the normal
least squares method leads to severe kinks and loop formation for ∼ n ≥ 4 which
is not evident here. The reaction (ii) data covers a far greater domain with respect to
half-lifetimes with only about 14 points (which is a poor dataset with respect to our
methods but which still gives quantitatively accurate values); because of the relatively
more rapid curvature changes, we would expect very different gradient behavior as
compared to (i) with its stronger linearity.

The corresponding plots for reaction (ii) are in Fig. 3.
In view of the nonlinearity, we chose a limited regime to curve fit for polynomial

order n = 3, 4, 5 in Fig. 3.The fit for this region is given in Fig. 4 in this reaction (ii).
The gradient was computed for the n = 5 polynomial to determine the rate constants
as it was the only order that gave a smooth curve for the first 12 consecutive points in
the range; the other orders also gave consistent and almost equal gradients except at
the extreme end points of the range plotted as depicted for example in Figs. 5, 6, 7.
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Fig. 4 Experimental points
curve fitted with polynomials of
order n = 3, 4, 5. The fit for this
range is excellent, despite the
nonlinear nature of the curve
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Fig. 5 Method 1 applied to
reaction (ii). Only at the
peripheral value does the fit fail
for lower values of n due to the
extreme curvature
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Unlike reaction (ii), the λ∞ for reaction (i) was ambiguous. The plot of (10) was
made for the same experimental values with different λ∞’s, both higher and lower than
the supposed experimental value for this reaction. The plots in Fig. 8 shows increasing
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Fig. 7 Variation of gradient
dλ = dt = d A/dt with time for
different polynomial orders
n = 1, 2, 4 and 5
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ka for decreasing λ∞; the choice λ∞ =1,050 leads to a value of ka close to the NLA
values for the different methods discussed which does not require λ∞, but NLA is
also able to determine this value once ka is determined. The rate constant from NLA
is higher than that determined from experiment, implying a lower λ∞ value which
is consonant with evaporation of solvent and/or the non-equilibration of temperature
prior to measurement to determine λ∞. Hence elementary NLA allows one to deduce
the accuracy of the actual experimental methodology in this example. Except for one
section, we shall apply NLA based on constant k assumption. We also quote some
values of Khan’s results [33, Table 7.1] in Table 1, where some comment is required.
The A absorbance is monotonically increasing and at higher time (t) values (see
[33, Table 7.1]) the experimental A value exceeds the A∞ that is determined by the
process of minimizing

∑
d2

i . Hence the minimization of
∑

d2
i with respect to A∞ is

taken as a protocol for determining the best k value even if it contradicts experimental
observation. Further, this protocol is highly sensitive to A; a change of 10−3 leads
to an approximately tenfold change in k. On the other hand, if A∞ determined from
experiment as 0.897 is accepted, then then computed rate constant for this value is
k = 2.69 × 10−3s−1 implying that the uncertainty in k is of the order of ±14 × 10−3.
Hence we can conclude that the Khan method is a protocol that accepts as correct the k
value that is determined by the minimization of A∞ for a certain A∞ range (≈0.8980
to.8805), which again refers to an unspecified protocol as to the choice of the range.

2.0.1 Method 1

This method is a variant of the direct method of Eq. (2). For constant k, the rate
equation dc

dt = −kc = −k(a − x) reduces to

λ(t)

dt
= −kλ(t) + λ∞k (18)

Hence a plot of λ(t)
dt versus λ(t) would be linear. We find this to be the case for poly-

nomial order n ≤ 3 as in Fig. 9 below for all data values; higher polynomial orders
can be used in selected data points of the curve below, especially in the central region.
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Fig. 8 Integrated equation (10)
plot with λ∞ from experiment
(with subscript 0) and from two
different arbitrary values (1, 2)
for λ∞, which yields two
different values for the rate
constant (subscripted 1 and 2,
respectively) due to gradient
change
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Thus criteria must be set up to determine the appropriate regime of data points for a
particular polynomial order in NLA. For n = 2, ka = 3.34 ± .03 × 10−3min−1 and
λ∞ = 1,134±10 units. The plots for reaction (ii) is a little more involved; it is a much
more rapid reaction and the number of data-points are relatively sparse for NLA and
the points cover the entire range of the reaction sequence and is highly non-linear; it
was found that the gradients were smooth for the first 10 or so points and reasonably
linear, but that at the boundary of these selected points, there are deflections in the
curve; on the other hand, the different polynomial order curves (n ≤ 5) are all coin-
cident over a significant range of these values; we chose the n = 5 polynomial curve
(Fig. 5) to determine the curve over the entire range and the linear least squares fit
yields the following data kb = 1.64± .04×10−2s−1 and A∞ = 0.8787± .0008 units.
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Fig. 10 Method 2 reaction
(i) where smooth curves are
obtained for at least n < 4
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2.0.2 Method 2

This method is yet another variant of the direct method of Eq. (2). Let α′ = λ∞ − λ0,
then ln α′ − ln(λ∞ − λ) = kt , then noting this and differentiating yields

ln

(
dλ

dt

)
= −kt + ln[k(λ∞ − λ0)] (19)

which is of the linear form Y = Mt + C .
A typical plot that can extract k as a linear plot of ln(dλ/dt) versus t is given in

Fig. 10 for Method 2, reaction (i) and in Fig. 6 for Method 2, reaction (ii). Linearity
is observed for n = 2 and smooth curves without oscillations for at least n ≤ 3 for
reaction (i) and an analysis for reaction (ii) uses n = 5. The linear least square line
yields for Method 2 the following:

ka = 3.35 ± .03 × 10−3min−1 and λ∞ = 1, 130 ± 10 units

kb = 1.72 ± .02 × 10−2s−1 and A∞ = 0.86(53) ± .02 units.

We note that because of the manifest nonlinearly of the gradients, one cannot in
our method determine the A∞ values to 4-decimal place accuracy as quoted by Khan
based on his model and assumptions [33, Table 7.1], such as the invariance of the rate
constant.

2.0.3 Other associated non-direct methods

There are other methods, one of which is a variant of Method 1 and another that
utilizes a least-squares optimization of the form of the equation for first and second
derivatives.
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2.0.4 Method 1 variation

A variant method similar to the Guggenheim method [16] of elimination is given below
but where gradients to the conductivity curve is required, and where the average over
all pairs is required; the equation follows from (19).

〈k〉 = −2

N (N − 1)

N∑

i

N∑

j>i

ln
(
λ′(ti )/λ′(t j )

)
/(ti − t j ) (20)

Since we are averaging over instantaneous k values, there would be a noticeable stan-
dard deviation in the results if the hypothesis of change of rate constant with species
concentration is correct. Differentiating (19) for constant k leads to (21) expressed in
two ways

d2λ

dt2 = −k

(
dλ

dt

)
(a) or k = −d2λ

dt2 /

(
dλ

dt

)
(b) (21)

If λ(t) = ∑n+1
i=0 a(i)t i−1, then as t → 0, the rate constant is given by k = −2a(2)

a(1)
from (21b). For the above, n, id, and iu denotes as usual the polynomial degree, the
lower coordinate index and the upper index of consecutive coordinate points respec-
tively, where the average is over the consecutive points, whereas the k rate constant
with subscript “all” below refers to the Eq. (20).

The results from this calculation are as follows:

ka,all , ka,id,iu = 3.32, 3.23 ± .07 × 10−3 min−1, n = 2, id = 10, iu = 20

ka,t→0 = 3.082 × 10−3min−1.

kb,all , kb,id,iu = 1.7150, 1.676 ± .3 × 10−2 s−1, n = 5, id = 1, iu = 10

kb,t→0 = 1.023 × 10−2s−1.

The asymptotic limit gives a lower value for kb than for the other methods for
reactions (i) and (ii). One possible explanation is that the rate constant changes as a
function of time, but we note that (21) was derived assuming constant k.

2.0.5 Optimization of first and second derivative expressions

Equation (21b) suggests another way of computing k for “well-behaved” values of
the differentials, meaning regions where k would appear to be a reasonable con-
stant. The (a) form of (21) suggests an exponential solution. Define dλ

dt ≡ dl and
d2λ
dt2 ≡ d2l. Then dl(t) = A exp(−kt) and dl(0) = A = h2 from (16). Furthermore,
as t → 0, k = (−2h2/h1) and a global definition of the rate constant becomes
possible based on the total system λ(t) curve.

With a slight change of notation, we now define dl and d2l as referring to the
continuous functions dl(t) = A exp(−kt) and d2l(t) = −k A exp(−kt) and we con-
sider (dλ/dt) and d2λ/dt2 to belong to the values (16) derived from ls fitting where
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(dλ/dt) = λ′
m , (d2λ/dt2) = λ′′

m which are the experimental values for a curve fit of
order m. From the experimentally derived gradients and differentials, we can therefore
define two non-negative functions Rα(k) and Rβ(k) as below:

Rα(k) =
N∑

i=1

(
d2λ(ti )

dt2 + kdl(ti )

)2

Rβ(k) =
N∑

i=1

(
dλ(ti )

dt
− dl(ti )

)2

(22)

where fα(k) = R′
α(k) and fβ(k) = R′

β(k) and a stationary point (minimum) exists at
fα(k) = fβ(k) = 0. We solve the equations fα, fβ for their roots in k using the New-
ton-Raphson method to compute the roots as the rate constants kα and kβ for functions
fα(k) and fβ(k), respectively. The error threshold in the Newton-Raphson method was
set at ε = 1.0×10−7 We provide a series of data of the form

[
n, A, kα, kβ, λα,∞, λβ,∞

]

where n refers to the polynomial degree, A the initial value constant as above, kα and kβ

are the rate constants for the functions fα and fβ (solved when the functions are zero
respectively ) and likewise for λα,∞ and λβ,∞. The λ∞ values are averaged over all
the 36 data points for reaction (i) and for the 12 datapoints of reaction (ii) from the
equation

λ∞ = dλ(t)

dt

1

k
+ λ(t) (23)

for scheme α and β for both reaction (i) and (ii). The results are as follows.

Reaction (i)
[
2, 3.7632 × 100, 3.2876 × 10−3, 3.2967 × 10−3, 1.1506 × 103, 1.1477 × 103

]
,[

3, 3.6384 × 100, 2.7537 × 10−3, 2.7849 × 10−3, 1.34756 × 103, 1.3334 × 103
]
,[

4, 3.6384 × 100, 2.0973 × 10−3, 2.4716 × 10−3, 1.7408 × 103, 1.4900 × 103
]
,[

5, 4.0213 × 100, 9.7622 × 10−3, 4.9932 × 10−3, 4.4709 × 102, 7.9328 × 102,
]
,[

6, 4.5260 × 100, 4.1270 × 10−2, 8.9257 × 10−3, 1.7101 × 102, 4.8403 × 102
]
.

We noticed as in the previous cases that the most linear values occur for 1 < n < 4.
In this approach, we can use the fα and fβ function similarity of solution for kα and
kβ to determine the appropriate regime for a reasonable solution. Here, we notice a
sudden departure of similar value between kα and kβ (about 0.4 difference) at n = 4
and so we conclude that the probable average “rate constant” is about the range given
by the values spanning n = 2 and n = 3. Interestingly, the λ∞ values are approxi-
mately similar to the ones for Method 1 and 2 for polynomial order 2 and 3 for reaction
(i). More study with reliable data needs to be done in order to discern and select appro-
priate criteria that can be applied to these non-linear methods. Because of the large
number of datapoints in the linear range, kα and kβ values are very compatible for
n = 2, 3 where the kα determination involves double derivatives, which cannot be
determined with accuracy unless a sufficient number of points is used.

123



J Math Chem (2011) 49:1384–1415 1401

Fig. 11 The plots according to
the ki and λ∞ values of Table 2
for reaction (i). The plot with the
parameters derived through the
ambiguously determined
experimental λ∞ is the poorer
fit compared to the NLA fits
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Reaction (ii)
The results for this system are
[
5, 7.5045 × 10−3, 1.2855 × 10−2, 1.5497 × 10−2, .94352, .89247

]

for the first 12 datapoints of the published data to time coordinate 155 s. For polyno-
mial order 3,4 and the first 11 datapoints, where there are no singularities in the curve
we have
[
3, 7.7275 × 10−3, 1.4469 × 10−2, 1.6147 × 10−2, .91320, .88335

]
[
4, 7.4989 × 10−3, 1.3146 × 10−2, 1.5359 × 10−2, .94208, .89652

]
.

Here, kα and kβ differ by ∼ .2 × 102 s−1 for all the n polynomial orders; one possible
reason for this discrepancy is the insufficient number of datapoints to to accurately
determine d2λ

dt2 . Even if the number of points are large, experimental fluctuations would
induce changes in the second derivative which would be one reason for discrepancies.
Hence experimentalists who wish to employ NLA must provide more experimental
points, especially at the linear region of the λ(t) versus t curve.

2.1 Inverse calculation

Rarely are experimental curves compared with the ones that must obtain from the
kinetic calculations. Since the kinetic data is the ultimate basis for deciding on values
of the kinetic parameters, replotting the curves with the calculated parameters to obtain
the most fitting curve to experiment would serve as one method to determine the best
method amongst several. For reaction (i) we have the following data in Table 2 used
in the plot of Fig. 11:

For reaction (ii), we use the data in Table 3 to plot Fig. 12.
Figure 11 indicate that the parameters derived from experiment is the worst fit

compared to the methods developed here, verifying that our computations, including
the λ∞ values are a better fit than the one derived from experiment due to flaws in
the methodology of driving the reaction to completion by heating, leading to evap-
oration and therefore inaccurate determination. Based on the comparisons between
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Table 1 Some results from reaction (ii) [33, p. 381, Table 7.1]

103 ∑
d2

i 513.5 109.4 8.563 63.26 212.7 227.4

A∞ .8805 .881 .882 .883 .885 .887

103 k/s−1 19.7 ± .6 18.1 ± .3 16.5 ± .1 15.5 ± .2 14.2 ± .4 13.3 ± .5

The first row refers to the square difference summed, where the lowest value would in principle refer to the
most accurate value (third entry from left). The second row refers to the A∞ absorbance and the last to the
corresponding rate constant with the most accurate believed at the stated units to be at 16.5 ± .1

Table 2 Data for the plot of Fig. 11 for reaction (i)

Result Procedure Poly. order λ∞ ki

1 From expt – 2, 050 1.7752 × 10−3

2 Method 1 2 1, 134.3 3.3397 × 10−3

3 Method 2 2 1, 130.23 3.347 × 10−3

4 Sect. 2.0.5 Rα 2 1, 150.63 3.288 × 10−3

Table 3 Data for the plot of Fig. 12 for reaction (ii)

Result Procedure Poly. order λ∞ kii

1 From expt – .8820 1.65 × 10−2

2 Method 1 5 .8787 1.64 × 10−2

3 Method 2 5 .8653 1.72 × 10−2

4 Sect. 2.0.5 Rβ 5 .89247 1.5497 × 10−2

Fig. 12 The plots according to
the kii and A∞ values of Table 3
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the reactions (i) and (ii) and the plots, we predict that reaction (i) if carried out under
stringently controlled conditions, especially in determining λ∞ would have a rate
constant approximately ∼ 3.2 × 10−3min−1 rather than the experimentally deduced
∼ 1.77 × 10−3min−1 with λ∞ ∼ 1,130 units rather than 2,050 units since the NLA
plots are a better fit than the one using the experimentally determined λ∞. For reaction
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(ii), we note a good fit for all the curves, that of the experiment, Khan’s results and
ours.

2.2 Evidence of varying kinetic coefficient k for reactions (i) and (ii)

Finally, what of direct methods that do not assume the constancy of k which was the
case in the above subsections? Under the linearity assumption x = αλ(t), the rate law
has the form dc/dt = −k(t)(a − x) where k(t) is the instantaneous rate constant and
this form implies

k(t) = dλ/dt

(λ∞ − λ(t))
(24)

If λ∞ is known from accurate experiments or from our computed estimates, then
k(t) is determined; the variation of k(t) could provide crucial information concerning
reaction kinetic mechanism and energetics, from at least one theory recently developed
for elementary reactions [14] at equilibrium; and for such similar theories [38] and
experimental developments for very large changes in concentration, it may be antic-
ipated that nonlinear methods would be used to accurately determine k(t). Such an
analysis could possibly also determine the so-called “reactivity coefficients” [14] that
account for variations in k for homogeneously distributed reactants that would provide
fundamental information concerning activation and free energy changes. However,
since these coefficients pertain to the steady-state scenario where a precise relation-
ship exists between the ratio of these coefficients and that of the activity, one might
not expect to detect these coefficients for relatively minute concentration changes that
occur in most routine chemical reaction determinations. On the other hand, the very
preliminary results here seem to indicate transient variations belonging possibly to
another class of phenomena; it could well be due to periodicity in the reactions where
some of the “beats” detected—assuming no experimental error in the data—could be
related to the time interval between measurements, that is, because the number of data-
points is restricted, only certain beats are observed in the periodicity. The assumption
that the spectroscopic detector is not noisy relative to the magnitude of the experi-
mental data and that it does not have significant periodic drift relative to a reference
absorbance leads to the conclusion that some form of chemically induced periodicity
might be present. It would be very interesting to increase the number of datapoints
where the time interval between measurements is reduced and to analyze the differ-
ent types of apparent frequencies that might be observed with different time intervals
of measurement. From these observations, perhaps theories could be adduced on the
nature of these presumed changes in the rate constant values over time, both for long
and short time scales. Other rationalizations discussed in the conclusions of this work
for the effect observed include improper mixing of the reactants that implies diffusion
currents that is a possible cause for the convex shape of the curve.
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Fig. 13 Variation of k with time
or concentration changes based
on the experimental value
λ∞=2,050 units and the
computations based on different
polynomial degrees n = 2, 3, 4
and the computed λ∞ values for
Method 1 and Method 2 for
fixed polynomial degree n = 3
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Fig. 14 An apparently
periodically varying rate
constant that settles to a higher
value at larger time increments.
A∞ was the value taken from
Method 1 above for polynomial
order 5 for reaction (ii)
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Reaction (i) results
Figure 13 refers to the computations under the assumption of first order linearity of
concentration and the conductivity. Whilst very preliminary, non-constancy of the
rate constants are evident, and one can therefore expect that another area of fruit-
ful experimental and theoretical development can be expected from these results that
incorporates at least some of the effects that has been postulated above.

Reaction (ii) results
To verify that the curious results are not due to minute fluctuations of the gradient, we
plot the gradient dl

dt of the curve fits for polynomial orders 1, 2, 4 and 5. Even for low
orders, the fit is very good with no oscillations observed between lower and higher
order polynomials for approximately the first 10 values of the kinetic data in Fig. 7. It
was found that the lower order polynomials gave essentially the same results for the
restricted domain where the gradients coincided with those of higher order.

The gradient drops to 0 at the long time t → ∞ limit; on the other hand, the fac-
tor 1

(λ∞−λ(t)) rises to infinity; so we might expect from these two competing factors
various sinusoidal-like properties, or even maxima. The surprising result is shown in
Fig. 14. It could be that the form (24) is not valid because no instantaneous value of the
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rate constant can be defined. Also, it is not possible at this stage to definitively rule out
the detector causing a sinusoidal variation due to periodic drift and instability. On the
other hand, if we can rule out artifacts due to systematic instrument error, by comparing
with other runs that do not use this instrument but which yields the same form of the
plot then one must admit the possibility that a long-time cooperative effect involving
coupling of the reactant molecules through the solvent matrix over the entire reaction
chamber may take place. However, if the results are due solely to instrument error, then
this method allows us to monitor the error fluctuations by taking a suitable weighted
average. We note that reaction (ii) is relatively complex, involving many ionic species
and some intermediate steps or reactions [33, pp. 414–416]. This fact, coupled with
the cell setup where steady state temperature gradients might well exist, would lead
to coupled processes described by irreversible thermodynamics, which could possi-
bly explain such rate constant changes relative to the first order parametrization used
here.

Comment: Barring artifacts, Figs. 13, 14 is consonant with two separate effects:
(α) a long-time limit due to changes in concentration that alters the force fields and
consequently the mean rate constant value (according to the theories in [14,38]) of
the reaction as equilibrium is reached, and (β) possible transient effects due to collec-
tive modes of the coupling between the reacting molecules and the bulk solution as
observed in the region between the start of the reaction and the long-time interval. In
both reactions (i) and (ii), there appears a slight change in the rate constant value at
time t = 0 and the values at the end of the experimental measured interval which may
be due to the altered force fields that would change slightly the rate constant accord-
ing to (α). On the other hand, there is a relatively slow and minute sinusoidal-like
change in the rate constant that may be due to some cooperative effect, if no artifacts
are implied; the interpolation with different polynomials leading to the same gradient
seems to suggest that some type of collective behavior might be operating during the
course of the reaction; if this is so then (β) would be a new type of phenomena that
has not hitherto been incorporated into chemical kinetics research.

3 Results for reaction (iii) and (iv)

Two different methods are utilized to determine the reaction rate constants. The direct
method utilizes determining the gradient k of the d[A1]/dt versus [Q] curve of Eq. (2)
by fitting the best straight line. Initial concentrations are not required, and the error
in the gradient may be estimated from the mean least squares error of the end-points;
define the mean square per point �2 as �2 = ∑n

i=1(ȳ − yi )
2/n where ȳ is the linear

optimized curve and yi a datapoint within the range of measurement. Then for the range
of datapoints |X | = |Q| we estimate the error in the rate constant as �k = √

�2/|X |.
For what follows below the first order rate constant for reaction (iii) is denoted k1d

derived from direct computation of the gradient of (2) whereas k1ls denotes the rate
constant as calculated by our least squares method (5). Similarly, for the seond order
reaction (iv), k2d denotes the rate constant derived directly from the gradient of the
curve following Eq. (2) by fitting the best straight line and k2ls is the second order rate
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Fig. 15 The polynomial degree
n for the orthogonal polynomial
fit for the first order But Cl
reaction (iii) where there is near
coincidence for n = 4, 5, 6, 7
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constant from the least squares minimization technique of (5). A detailed description
follows below.

The general 1st and 2nd order equations We state the standard integrated forms
below as a reference that requires specification of initial concentrations in order to
contrast them to the methods developed here. In the standard methodology, the first
order rate constant k1 is determined from

k1 = 1

t
loge{b(b − x)} (25)

and the second order rate constant k2 is determined from

k2 =
[

1

t (a − b)

]
loge

b(a − x)

(b − x)
(26)

where these expressions are given in [35, p. 2063] and these equations were used by
those that ran reactions (iii) and (iv) to determine the rate constants, where a and b
are the initial concentration terms at t = 0 and x is the extent of reaction and where
by hypothesis k1 and k2 are constants for all times t .

3.1 Reaction (iii) first order details

Figure 15 is a plot of the various orthogonal polynomial order fits. The n = 2 order is
rather poor but higher orders all coincide with the experimental points. And for n > 2,
we find that the gradient curves coincide within a certain range where [A] > 0.005M.
If in fact the order is 1 or unity, a plot of [Ȧ]versus[A] would be entirely linear. Figure
16 depict these plots, where some linearity is observed for [A] > 0.005 M.

Figure 16 shows a coincidence of the rate curves for order n = 5–7 above
[A] = 0.005 M. It may be therefore inferred that for at least n > 5, and for [A]
> 0.005 M, the gradient represents the rate constant. The inaccuracy for very low
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Fig. 16 A plot of the rate of
decomposition of
But Br(≡ Ȧ) versus A where [A]
refers to the molar concentration
of But Br according to the
kinetic data published in [34,
Table IX] for reaction (iii)
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Table 4 Results for the first order But Br reaction (iii) neglecting last datapoint for calculating the mean
rate constant k

n k1d /s−1 k1ls /s−1 Est. error in k Abs. dev. in n

2 5.038689×10−6 4.881742×10−6 4.164406×10−7 0.000151

3 5.374684×10−6 5.307609×10−6 8.129860×10−8 0.000073

4 5.053045×10−6 5.047342×10−6 3.541633×10−7 0.000034

5 5.398782×10−6 5.181527×10−6 2.772767×10−7 0.000014

6 5.393767×10−6 5.184763×10−6 2.723767×10−7 0.000013

7 5.500610×10−6 5.187774×10−6 3.028407×10−7 0.000014

concentrations may be explained by reference to Fig. 15. The experimental curve is
parametrized as

[A] =
nr∑

i=1

hi t
i (27)

The time parameter is very large at low concentrations (>3.5×105 s) of But Br; the
hi values would be small and the uncertainties in the reactant concentration relatively
high; this explains the large scatter in the gradient values at low concentrations. We
therefore ignore the first two values of [A] at low concentrations and focus on the
gradients for points of coincidence of the different polynomial curves in in Fig. 16.
The results are shown in Table 4. The linear fit in this specified range yields k1d . The
absolute root mean squared deviation per datapoint of Fig. 15 is listed in the last rhs
column of Table 4 where the best fit is in the range n =5–7. The average k1d value
taking into account the error estimate is (5.4 ± 0.5) × 10−6s−1, which is close to the
(5.22 ± 0.3) × 10−6s−1 of the experimentalists.

The results from the literature for this first order reaction [34, Table IX, p. 2071]
using Eq. (25) has a mean value of 5.22 × 10−6 and for the 12 datapoints deter-
mined, k varied with range (5.04–5.48)×10−6 in appropriate dimensions. The results

123



1408 J Math Chem (2011) 49:1384–1415

Fig. 17 The direct calculation
of the change of the rate
constant with concentration
[A] = [But Br] directly from the
published experimental data [34,
Table IX] for reaction (iii)
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as computed according to our methods in Table 4 show the absolute deviation per
point to be quite small, and Fig. 15 shows some plots. The gradient of the curves are
graphed for various n in Fig. 16. The linear fit in this specified range yields k1d . The
absolute root mean squared deviation per datapoint of Fig. 15 is listed in the last rhs
column of Table 4 where the best fit is in the range n =5–7. The average k1d value
taking into account the error estimate is (5.4 ± 0.5) × 10−6s−1 which is close to the
(5.22 ± 0.3) × 10−6s−1 of the experimentalists. For the same regime, (5) is used to
compute k1ls listed in the 3rd column. For n =5–7, kls = 5.18 × 10−6s−1 which is
exceptionally close to the experimental determination mentioned above based on the
integrated equation (25) requiring initial concentrations.

Lastly, (3) is used to compute the instantaneous rate constant shown in Fig. 17.
We note that a maximum is formed before a drop at lower concentrations. Again, the
convex form with a maximum is evident here as for reactions (i)–(ii).

3.2 Reaction (iv) second order details

The pioneer experimentalists had decided a priori that the NaOEt–iso-PropylBr
(Pri Br) reaction was second order and therefore did not independently measure the
NaOEt and the Pri Br concentrations as shown in Fig. 18. Such a setting introduces a
larger degree of scattering even if the rate order is known a priori to be the appropri-
ate one; the scattering is evident in the rate constant curve of Fig. 1. The orthogonal
polynomial fit is very good for n > 3 in Fig. 18. The gradient curve of Fig. 19 shows
a coincidence of points for polynomial order n > 3 except for the measurement at
the lowest concentrations, for the same reasons as given for reaction (iii). Figure 20
is a close-up of the rate versus [A][B] curve where the first 2 points show significant
scatter. We ignore the first 3 points of lowest concentrations in our calculations for
k2d and k2ls for different polynomial orders n; k2d is the rate constant by linear least
squares fit to each of the curves of Fig. 19 of d[A]/dt versus [A][B] for different
polynomial orders n and k2ls is the rate constant calculated according to (5). The
results are presented in Table 5. In Table 5, the value of k2d is remarkably constant
for n =4–7, in keeping with the curves of Fig. 19 that are coincident for the selected
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Fig. 18 The experimental decay
curve for the
NaOEt–iso-PropylBr (Pri Br)
reaction [35, Table VII, p. 2064]
for reaction (iv)

0 5 10 15
x 105

0

0.05

0.1

0.15

0.2

0.25

[is
o−

P
rB

r]

0.75

0.8

0.85

0.9

0.95

1

[N
aO

E
t]

Time/s

Fig. 19 The rate curve for
reaction (iv) shows that the
polynomial order n =2–3 is too
low to fit the changes of
gradient. The other curves of
higher order all coincide exact
for very large time values or low
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average gradient is calculated by
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concentration ranges where we have k2d = (2.80 ± .07) × 10−6 M−1 s−1 which is
very close also to the computed k2ls values, where the average value may be written
k2ls = (2.83 ± .05) × 10−6 M−1 s−1.

The experimental results for this second order reaction [35, Table VII, p. 2064]
using equation (26) has a mean value of 2.88 × 10−6 M−1 s−1 (2.95 × 10−6 M−1 s−1

if solvent expansion is taken into account according to an extraneous theory), and for
the 19 datapoints determined , k varied within the range (2.76−2.96)×10−6) M−1 s−1.
Figure 1 graphs the instantaneous rate constant for reaction (iv) for the concentration
ranges used for calculating k2d and k2ls . Again a semi-sinusoidal shaped curve is
observed. There is evident scatter in this graph which may be attributed to the fact that
[A] and [B] are completely correlated and there is no possibility of random cancella-
tions due to independent measurement of both [A] and [B]. The form of the curve is
as for reaction (iii) in Fig. 17 and as for reaction (ii) in Fig. 14 if we ignore the low
concentration value as having a large scatter at about t = 150 s. Even the ambiguous
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Fig. 20 Close-up of the rate
curve for reaction (iv) with
reactant product concentration
for polynomial fit n = 6. The
last 3 lowest product
concentration points are ignored
in the rate averaging to
determine the rate constant
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Table 5 Results for the second order Pri Br–NaOEt reaction (iv) neglecting the last 3 datapoints that are
discontinuous for calculating the rate constants k2d and k2ls

n k2d /M−1s−1 Error �k2d k2ls/M−1s−1

2 1.251043×10−6 1.189216×10−7 2.180891×10−6

3 2.142702×10−6 8.845014×10−8 2.654936×10−6

4 2.818337×10−6 6.850636×10−8 2.829915×10−6

5 2.822939×10−6 6.600369×10−8 2.833440×10−6

6 2.876573×10−6 6.613089×10−8 2.853618×10−6

7 2.770475×10−6 7.707235×10−8 2.823186×10−6

reaction (i) shows a shallow convex shape, as with all the rest. Figure 21 is a pallet
for the 4 diverse reactions (i)–(iv) of different orders reported by different sources all
depicting the same general form which is suggestive of some type of overall “chemical
momentum” effect. The data for reaction (ii) was determined over 50 years apart from
(iii) and (iv), and all these by prominent persons, especially Ingold and co-workers
who were amongst the best kineticists of the twentieth century, in addition to the fact
that the Ingold group were responsible for elucidating and defining the SN1, SN2, E1
and E2 reactions in organic chemistry. It seems that all these reactions depict a transient
and long-ranging coupling phenomena hitherto unnoticed due to traditional analysis
that uses integrated rate law expressions with the presupposition of invariant rate con-
stants, which is also built into current statistical mechanics theories. There could be
at least two possible separate effects that could contribute to the above observations:

(a) independently of the initial concentrations, one observes a rise in the rate con-
stant before falling when the reactant concentration falls. Hence if we started a
reaction at the midpoint concentrations close to the peak rate constant value in
the reaction runs for reactions (ii)–(iv), then the rate constant profile will show
a form similar to those shown here, except the peak rate constant will shift to
lower concentrations, at least at a concentration less than the concentration at the
commencement of the reaction. This possibility suggests some type of “chemical
momentum” which is a long-ranging coupling phenomena that current statistical
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Fig. 21 Collation of change of rate constants with concentration and time for reactions (i)–(iv)

mechanical theories are not able to account for. Obviously this scenario admits
the possibility of hysteresis behavior

(b) the rate constant is simply a function of reactant and product concentrations as
outlined for instance in [14] and no hysteresis behavior exists. This possibility
would encompass imperfect mixing of the reactant components at the commence-
ment of the reaction, so that time dependent diffusion and structural readjustment
factors would be involved in explaining this possibility.

Currently, mainstream statistical mechanical theories do not have a quantum or
classical description of (a) and (b) above.

Reality would probably be described by predominantly either (a) or (b) above with
a possibility of the other playing a minor role in the final effect.

More careful experiments under stringent conditions need to be performed to :

α. verify the existence of this effect by using other methods just in case the polynomial
method has a property that induces a maximum in the gradient at approximately
the midpoint of the domain range under investigation

β. determine which of the two (a) or (b) above is the preponderant effect.
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4 Conclusions

The differential methods developed here yield results for the average rate constant that
is consistent and close in value to the traditional integrated law expression for 3 reac-
tions whose rate constants were determined with precision by reliable and prominent
kineticists, implying that the methods developed here are robust. Based on reproduc-
ibility of the method in relation to the standard protocol, we further test the differential
methods for the ambiguous reaction (i) with regard to the inaccurate total reactant con-
centration (reflected in λ∞) and we showed that the rate constant can be determined
without such data. Since much science refers to systems whose key variables are not
controllable, as in astrophysical measurements and in forensics and archaeological
studies, these methods could prove useful for analysis in these areas for reactions to
arbitrary order.

All the reactions studied with different orders and mechanisms within the polyno-
mial optimization method all show some type of “chemical rate constant momentum”
effect in that there is a gradual acceleration in the rate over time initially followed by
a sharp decrease as the reactants deplete. This observation appears to be novel. Two
independent factors might contribute to this effect:

(A.) the transient coupling of thermodynamical force gradients with flows and spe-
cies concentrations and molecular orientation that leads to the observed profile

(B.) the rate constant is a second order function of the reactant and product concen-
tration according to [14]. That theory was based on evidence from equilibrium
MD simulation of a chemical reaction.

Stringently controlled repeated experimentation is required to determine the rela-
tive contributions of (A.) and (B.) above. If a semi-sinusoidal profile is observed for
different initial concentrations that covers the range of the concentration profile of
a reference reaction of exactly the same type which also exhibits a semi-sinusoidal
profile, then (A.) is the predominant mechanism which causes hysteresis behavior,
whereas if the resulting profile of the experiments leads to a truncated semi-sinusoidal
curve of the reference profile beginning at the initial concentration of the experimental
run, the (B.) is the major effect. There is of course the possibility of a combination
of effects (A.) and (B.) to varying degrees. Both effects have not been anticipated in
current kinetic theories, which implies that these effects in themselves constitutes one
area for further investigation.

Whilst the main purpose of this work is not to provide physical explanations, we
suggest that the resulting curves in Fig. 21 can be explained by introducing at least
3 contributing factors or processes in real time. The first (f1) involves the fact that
the reactants are initially separated, and the molecules must diffuse homogeneously
before they can begin to interact. The second process (f2) involves reactant interac-
tion with the solvent matrix, which would impede the reactive interactions and also
conceivably raise the activation energy relative to unbounded reactants and lastly (f3)
describes the product solvent matrix interaction, which is probably not too significant
for the typical reactions studied here. At the initial stage of the reaction, there is mini-
mal solvent reactant interaction which would result in the caging of the reaction active
sites and so the reaction is diffusion limiting; within a certain time scale, the mutual
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diffusion of reactants would allow for more reactant-reactant interactions, leading to
an apparent increase in the rate constant; with the progress in time, however, the caging
of reactants due to (f2) would increase the effective activation energy and hence lower
the value of the rate constant which explains the precipitous drop at large time values;
process (f3) might prevent in some cases the back reaction due to the breakup of the
product to reactant molecules, and it may moderate (f2) by liming the number of active
solvent interaction with the reactant molecules. One might expect (f1) to cause the rise
in the rate constant, and (f2) the lowering, leading to the convex maximum observed
in all the reactions due to these competing processes. Factors (f1)–(f3) together would
result in phenomena (A.) above. Conventional kinetics, modeled after ideal situations
of homogeneity, is not able to account for these fine second order details in the change
in the reaction rate during the course of the reaction. Even in the homogeneous case,
such as a reactive system in thermodynamical equilibrium, it was found that the rate
constant is a well-defined function of the reactant and product concentrations, but this
contribution to the changes found here is probably of second order for the typical
reactions mentioned here because of the relatively low concentrations of the active
species within an inert solvent matrix which did not feature in the simulation studies.

The results presented here provides alternative developments based on NLA that
is able to probe into the finer details of kinetic phenomena than what the standard
representations allow for, especially in the the areas of changes of the rate constant
with the reaction environment. NLA can also determine average rate constant values
without λ∞ being known or determined. Even with the assumption of invariance of
k, one can always choose the best type of polynomial order that is consistent with
the assumption, and it appears that the initial concentration as well as the rate con-
stant seem to feature as global properties based on the polynomial expansion, since
taking limits as the time parameter t → 0 yields information about the rate constant
and initial concentrations. It should be noted that the examples chosen here were first
order ones; the methods are general and they pertain to any form of rate law where
the gradients and forms can be curve-fitted and the form of the equations optimized
as in Sect. 2.0.5. One other research area that may be investigated is the possibility
of reactions of fractional order; elementary reactions are by nature of integer order. Is
there a method that can reduce them to fractional order if the rate constant is indeed
in part a weak function of the reactant concentrations?
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